Online pH Analyzer Model No:pHG-2081Pro User manual

SHANGHAI BOQU INSTRUMENT CO.,LTD

Address:No. 118 Xiuyan Road,Pudong New Area,Shanghai, zip code:201315,China Web:www.boquinstruments.com

Catalog

Technical Specification		1
Installation and Wiring		2
Size	2	
Installation	2	
Wiring	3	
Operation Interface		4
Measurement Interface		5
Setting		6
Setting menu		
Unit		
4-20mA		
Communication		
Temperature		
Simulation		
Relay1		
Relay2		
Relay3		
Storage		
Date&Time		
Language		
Backlight	11	
Factory data reset	11	
Calibration		12
Auto Calibration	12	
Manual Calibration	13	
Three Point Calibrati	ion 13	
Buffer Group		
Electrode state		
Factory data reset		
History		15

Waveform	 15
Appendix	 16

Introduction

pHG-2081Pro Industrial Online pH Analyzer is a brand-new online intelligent digital instrument independently developed and manufactured by BOQU Instrument. This pH analyzer communicates with the sensor through RS485 ModbusRTU, which has the characteristics of rapid communication and accurate data. Complete functions, stable performance, easy operation, low power consumption, safety and reliability are the outstanding advantages of this pH analyzer.

The pH analyzer can be widely used in industrial application such as thermal power generation, chemical industry, metallurgy, environmental protection, pharmaceutical, biochemical, food and tap water.

Technical Features

- 1) Extremely quickly and precision pH sensor.
- 2) It's suitable for harsh application and free-maintenance, save cost.
- 3) Provide two ways of 4-20mA output for pH and temperature.
- 4) With data recording function, user easy to check history data and history curve.

Technical Specification

Specifications	Details
Name	Online pH Analyzer
Shell	ABS plastic
Power Supply	90V ~ 260V AC 50/60Hz
Power Consumption	4W
Output	Two 4-20mA output tunnels,RS485
Relay	5A/250V AC 5A/30V DC
Size	144mm×144mm×104mm
Weight	0.9kg
Protocol	Modbus RTU
Range	-2.00pH~16.00 pH
	-2000mV~2000mV
	-30.0°C~130.0°C
Accuracy	±1%FS
	±0.5°C
Waterproof Level	IP65
Storage Environment	-40°C~70°C 0%~95%RH(non-condensing)
Working	-20°C~50°C 0%~95%RH(non-condensing)
Environment	

Installation and Wiring

SIZE

Installation

Wiring

Operation Interface

There are 2 modules in the main panel of the pH measuring instrument, LED LCD display module and button module.

Users can set and adjust the parameters of the instrument through the 5 buttons on the panel.

Picture 1 Operation Interface

- (1) Set/Exit button
- 2 Select/Shift button
- ③ Up button
- (4) Down button
- (5) Confirm button
- 6 LED screen

Measurement interface

Enter the main measurement interface after the start-up animation.

When the instrument is working normally, the LED display shows the following content.

Picture 2 Main interface

- ① Measurement value
- 2 Unit
- ③ Temperature
- (4) Real-time date
- 5 Real time
- 6 Measurement status
- \bigcirc 4-20mA corresponding value of pH
- (8) Relay status
- 9 Mode

Setting

Press "Set/Exit Button" to enter the password input interface.

Picture 3 Password

Enter settings:

Enter the password "3700" to enter the setup menu.

SETUP	
1. Measure 2. 4-20mA 3. RS485 4. Temp 5. Simu. 1	
SETUP	ĺ
6. Simu. 2 7. Relay1 8. Relay2 9. Relay3 10. Storage	
SETUP	8
11.USB 12.Date 13.Language 14.Backlight 15.Factory Reset	

Picture 4 Setting Menu

3.1 Unit

In this menu, users can change the measurement method pH/ORP, and at the same time can adjust the offset to make the measurement accurate.

M	easure
Mode:	▶ pH ORP
Offset:	+0.00 pH

Picture 3.1 Unit

3.2 4-20mA

In this menu, users can change the corresponding value of 4-20mA and set the corresponding effective range.

4mA	: <mark>0</mark> 0.00 pH
20mA	:14.00 pH
4mA	:+000 ℃
20mA	:+100 °C

Picture 3.2 4-20mA

3.3 ModbusRTU communication

In this menu, users can change the communication address and rate.

Picture 3.3 ModbusRTU communication

3.4 Temperature

In this menu, users can set the temperature offset and manually set the temperature.

Picture 3.4 Temperature

3.5 Simulation

In this menu, users can simulate the 4-20mA current output. The current output can be verified by simulating the measurement of the IO1 (measured value) and IO2 (temperature) ports. The release relay is closed. The relay is simulated and verified.

Picture 3.5.1 Simulation1

Picture 3.5.2 Simulation2

3.6 Relay1

In this menu, users can switch the relay 1 function, set the parameter alarm upper limit value, alarm return difference value, and alarm delay time.

Rel	lay1
Func. :	ON ▶ OFF
High :	10.00 pH
Hyst :	1.00 pH
Delay :	030 S

Picture 3.6 Relay1

3.7 Relay2

In this menu, users can switch the relay 2 function, set the parameter alarm lower limit value, alarm return difference value, and alarm delay time.

R	ə1	ay2
Func.		ON ▶ OFF
Low		03.00 pH
Hyst	•	1.00 pH
Delay	8	030 S

Picture 3.7 Relay2

3.8 Relay3

In this menu, users can set the relay 3 function, set the cleaning time and cleaning cycle.

Picture 3.8 Relay3

3.9 Storage

In this menu, users can set the storage function (default off), clear storage memory and recording interval.

Picture 3.9 Storage

3.10 Date&Time

In this menu, users can change date and time according to different time zone.

Y	-	M	_	D	:	2019-10-01
Н	•	M		S		12:00:00

Picture 3.10 Date&Time

3.11 Language

Users can choose English or Chinese according to need.

Picture 3.11 Language

3.12 Backlight

In this menu, users can change the backlight mode of the LCD screen. The backlight can be always on or delayed off (the default is delayed off), the backlight brightness can be changed (brightness level 1-5, brightness increases), and the contrast can be changed.

Picture 3.12 Backlight

3.13 Factory data reset

In this menu, users can restore the current output and relay to the factory parameters.

Restore	: ▶ Current
	Relay1
	Relay2
	Relay3
	A11

Picture 3.13 Factory data reset

Calibration

Press "ESC" to enter the password input interface.

Picture 5 Password

Enter calibration menu:

Enter the password "3900" to enter the calibration menu.

Picture 6 Calibration menu

4.1 Auto Calibration

In this menu, users can calibrate pH value by buffer group. When the value comes stable, press 'Enter' buttom.

Picture 4.1 Auto Calibration

4.2 Manual Calibration

In this menu, users can calibrate pH value by known density solution. Press 'Enter' buttom after value changed.

Picture 4.2 Manual Calibration

4.3 Three Point Calibration

In this menu, users can use the given solution to calibrate three point for a precise curve.

Three F	'oint Cal	1
7.16 pH -9.6 mV 25.7 ℃	07.00	
Press	Enter	- 92. - 13
Three F	'oint Cal	2
7.16 pH -9.6 mV 25.7 ℃	07.00	
Press	Enter	
Three F	'oint Cal	3
7.16 pH -9.6 mV 25.7 ℃	07.00	
Press	Enter	

Picture 4.3 Three Point Calibration

4.4 Buffer Group

In this menu, users can change buffer group for different standard.

	Βι	ıffer	Gro	oup	
•	JJG	Buffe	ər		
	NIST	Buffe	ər		
	4 00	6.9	16	a 19	
	т. 00	0.0	0	0.10	

Picture 4.4 Buffer Group

4.5 Electrode State

In this menu, users can check offset and slope of electrode.

2	Electrode State
	Offset : -2.6 mV
	Slope : 98 %

Picture 4.5 Electrode State

4.6 Factory data reset

In this menu, users can restore the calibration parameters to the factory parameters.

Picture 4.6 Factory data reset

History Data Display

Press "ESC" to enter the password input interface.

Picture 7 Password

Enter History Data Display:

Enter the password "1300" to enter the History Data Display.

Press the up and down keys to switch the display. It can store up to 1000 records and overwrite automatically if reach maximum.

Record	1/1000
2020-01-09	12:48:28
6.00 pH 2020-01-09	12 • 43 • 28
6.00 рН	12.45.20
2020-01-09	12:38:28
2020-01-09 6.00 рН	12:33:28

Picture 8 History

Waveform Display

Press "ESC" to enter the password input interface.

Picture 9 Password

Enter Waveform Display:

Enter the password "1400" to enter the Waveform Display. Press the up and down keys to switch the display.

Picture 10 Waveform Display

Appendix

Communication protocol

Communication parameters:

Baudrate:4800, 9600, 19200(9600default)

Serial data format: 8N1(8 data bits, No parity, 1 stop bit)

Function code: 03

Device address: pH analyzer defaults to 1

Register definition:

Register address(Dec)	Definition	R/W	Remarks	
0	Temp	R	×0.1°C, sint16	
1	pН	R	×0.01pH, sint16	
2	mV	R	×0.1mV(pH), ×1mV(ORP), sint16	
6	Meter Type	R	pH is 1, ORP is 5	
8	RTU	R/W	Modbus communication address, pH/ORP defaults 1.	
	Address			
9	Baudrate	R/W	4800, 9600, 19200, 9600 as default	

Examples of communication formats:

Data reading instruction

Addr. + Func. + Register start address + Number of Registers read + CRC check code

(Hex)

e.g. Tx:01 03 00 01 00 01 D5 CA

Address	Func.	Register start address	Number of Registers read	CRC check code
01	03	0001	0001	D5CA

Data return instruction:

Address + Func. + Data length + Data + CRC check code (Hex)

e.g. Rx:01 03 02 00 DF F9 DC

Address	Func.	Data length		pH value	CRC check code
01	03	02		00DF	F9DC
				DF	
		HEX	DF		
		DEC	223		

The hexadecimal number DF is converted to decimal by a calculator (programmer mode) to obtain the value 223.

The actual value contains 2 decimal places, then the actual value is $223 \times 0.01 = 2.23$

Electrode parameter table of Online pH Analyzer

Electrode sort		pH/	ORP			
Туре	pH8012	pH8012F	pH8010	pH8010F	ORP8083	
Measurement Range	0.00pl	H~14.00pH	-1000mV~1	000mV	-1000mV~1000mV	
Temp Range	0.0°C~80.0°C					
Accuracy	2%, ±0.5°C		2%		2%	
Withstand pressure	0.06MPa					
Waterproof Level	IP68/NEMA6P					
Slope	≥95%					